31 research outputs found

    The influence of a petrochemical discharge on the bioturbation and erosion potential of an intertidal estuarine mudflat (Humber estuary, UK)

    Get PDF
    The influence of sedimentary variables on the structure and function of infaunal estuarine and marine communities is well studied but less is known of the influence of biota on sediment properties. Feeding and burrowing activity, locomotion, the production of faecal pellets and biological secretions (bioturbation) have important implications for sediment structure, chemistry, transport characteristics and the flux of nutrients and contaminants. Although spatial and temporal patterns in bioturbation have been studied to some extent, little attention has been given to the effects of pollution. The present study examines the effects of an intertidal petrochemical discharge into the Humber estuary (UK), from BP chemicals (Saltend) Ltd on the structure and function of the communities.Field and laboratory techniques were used to determine the effects of community change on bioturbation potential. In addition, a laboratory flume was constructed to measure sediment erosion potential with field measurements being taken using a Cohesive Strength Meter (CSM). The physico-chemical properties of the sediment, changes to the infaunal community structure, bioturbation potential and the interaction of these variables were used to explain differences between the erosion potential of sediments subject to varying levels of contamination. The main study was carried out on the Saltend mudflats near Hull, with sites at various distances from the outfall being used. A further set of control sites on the adjacent, and largely unaffected, mudflat at Paull were also used.In terms of the sediment properties, sites closest to the outfall showed the greatest degree of anoxia and the highest chlorophyll-a and carbohydrate concentrations, with all three parameters being seasonally influenced. No consistent spatial or temporal patterns were found for any of the other parameters (water and organic content, particle size). Whilst the infaunal communities were characteristic of estuarine areas, macrobenthic community response followed the Pearson & Rosenberg (1978) model for organic discharges with high abundance and low species diversity being associated with the more polluted sediments. Close to the discharge, there was an impoverished community consisting predominantly of highly abundant oligochate worms. With increasing distance from the outfall, species diversity and biomass increased with Hediste diversicolor becoming increasingly dominant and the appearance of Corophium volutator, Streblospio shrubsolii and Macoma balthica.Bioturbation potential was significantly reduced (in terms of depth and burrow volume and density) by increasing effiuent concentrations and with proximity to the discharge. The diversity of both feeding and sediment modification guilds was also reduced as a result of the discharge.Both field and laboratory studies indicated a stabilising effect of this type of pollution. Using the CSM, critical shear stress values were found to be significantly lower from unpolluted sites, indicating higher erosion potential, than those from sites close to the discharge. As a result of this, the total mass of sediment eroded from unpolluted sites was significantly higher than that from polluted areas. A similar trend was observed in the laboratory with sediments treated with an effluent concentration of 32% being considerably more stable than untreated sediments. Flume studies also indicated the stabilising effect of pollution with suspended particulate matter (SPM) concentrations and mass of sediment being transported as bedload being significantly higher for unpolluted sediments.These differences in erosion potential were attributed to the direct effects of the effiuent on the physico-chemical properties of the sediment, the effects of the effiuent and sediment type on macrofaunal community structure and function and the differences in bioturbation potential between sites. The implications of these findings in the wider context of coastal management are discussed

    Behavioural effects of hypersaline exposure on the lobster Homarus gammarus (L) and the crab Cancer pagurus (L)

    Get PDF
    There is scarce existing information in the literature regarding the responses of any marine species, especially commercially valuable decapod crustaceans, to hypersalinity. Hypersaline discharges due to solute mining and desalination are increasing in temperate areas, hence the behavioural responses of the edible brown crab, Cancer pagurus, and the European lobster, Homarus gammarus, were studied in relation to a marine discharge of highly saline brine using a series of preference tests. Both species had a significant behavioural response to highly saline brine, being able to detect and avoid areas of hypersalinity once their particular threshold salinity was reached (salinity 50 for C. pagurus and salinity 45 for H. gammarus). The presence of shelters had no effect on this response and both species avoided hypersaline areas, even when shelters were provided there. If the salinity of commercial effluent into the marine environment exceeds the behavioural thresholds found here, it is likely that adults of these species will relocate to areas of more favourable salinity. In management terms it is advisable to ensure that any hypersaline discharges are limited to the lowest tolerance of all the economically valuable species in the area to avoid loss of revenue in fishery areas

    DPSIR-Two decades of trying to develop a unifying framework for marine environmental management?

    Get PDF
    © 2016 Patrício, Elliott, Mazik, Papadopoulou and Smith. Determining and assessing the links between human pressures and state-changes in marine and coastal ecosystems remains a challenge. Although there are several conceptual frameworks for describing these links, the Drivers-Pressures-State change-Impact-Response (DPSIR) framework has been widely adopted. Two possible reasons for this are: either the framework fulfills a major role, resulting from convergent evolution, or the framework is used often merely because it is used often, albeit uncritically. This comprehensive review, with lessons learned after two decades of use, shows that the approach is needed and there has been a convergent evolution in approach for coastal and marine ecosystem management. There are now 25 derivative schemes and a widespread and increasing usage of the DPSIR-type conceptual framework as a means of structuring and analyzing information in management and decision-making across ecosystems. However, there is less use of DPSIR in fully marine ecosystems and even this was mainly restricted to European literature. Around half of the studies are explicitly conceptual, not illustrating a solid case study. Despite its popularity since the early 1990s among the scientific community and the recommendation of several international institutions (e.g., OECD, EU, EPA, EEA) for its application, the framework has notable weaknesses to be addressed. These primarily relate to the long standing variation in interpretation (mainly between natural and social scientists) of the different components (particularly P, S, and I) and to over-simplification of environmental problems such that cause-effect relationships cannot be adequately understood by treating the different DPSIR components as being mutually exclusive. More complex, nested, conceptual models and models with improved clarity are required to assess pressure-state change links in marine and coastal ecosystems. Our analysis shows that, because of its complexity, marine assessment and management constitutes

    Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration

    Get PDF
    © 2016 Elsevier Ltd. Ecological Engineering (or Ecoengineering) is increasingly used in estuaries to re-create and restore ecosystems degraded by human activities, including reduced water flow or land poldered for agricultural use. Here we focus on ecosystem recolonization by the biota and their functioning and we separate Type A Ecoengineering where the physico-chemical structure is modified on the basis that ecological structure and functioning will then follow, and Type B Ecoengineering where the biota are engineered directly such as through restocking or replanting. Modifying the physical system to create and restore natural processes and habitats relies on successfully applying Ecohydrology, where suitable physical conditions, especially hydrography and sedimentology, are created to recover estuarine ecology by natural or human-mediated colonisation of primary producers and consumers, or habitat creation. This successional process then allows wading birds and fish to reoccupy the rehabilitated areas, thus restoring the natural food web and recreating nursery areas for aquatic biota. We describe Ecohydrology principles applied during Ecoengineering restoration projects in Europe, Australia, Asia, South Africa and North America. These show some successful and sustainable approaches but also others that were less than successful and not sustainable despite the best of intentions (and which may even have harmed the ecology). Some schemes may be 'good for the ecologists', as conservationists consider it successful that at least some habitat was created, albeit in the short-term, but arguably did little for the overall ecology of the area in space or time. We indicate the trade-offs between the short- and long-term value of restored and created ecosystems, the success at developing natural structure and functioning in disturbed estuaries, the role of this in estuarine and wetland management, and the costs and benefits of Ecoengineering to the socio-ecological system. These global case studies provide important lessons for both the science and management of estuaries, including that successful estuarine restoration is a complex and often difficult process, and that Ecoengineering with Ecohydrology aims to control and/or simulate natural ecosystem processes

    Dynamic competition and resource partitioning during the early life of two widespread, abundant and ecologically similar fishes

    Get PDF
    Competition and resource partitioning can have profound implications for individuals, populations and communities, and thus food webs, ecosystems and the management of biota and environments. In many species, the impacts of competition and resource partitioning are believed to be most severe during early life, but our understanding of the mechanisms and implications is incomplete. This study revealed short-term variations in both the occurrence and direction of competition during the early life of roach Rutilus rutilus and common bream Abramis brama, two of the most widespread and abundant fish species in Europe. There was also evidence of resource partitioning when small taxa dominated the zooplankton, but not when larger taxa were more abundant. In spite of the differences in foraging ecology, there were no significant differences in growth or nutritional condition in allopatry and sympatry. Similar to the concept of condition-specific competition, when competitive abilities vary along environmental gradients, the impacts of interspecific interactions on foraging ecology, growth and condition are dynamic and likely vary according to temporal fluctuations in prey availability. This is important because short-term incidences of competition could have cascading effects on food webs, even when no impacts on growth rates or condition are detected

    An objective framework to test the quality of candidate indicators of good environmental status

    Get PDF
    Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive's (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the 11 descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5, and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna, and plankton), and assessment regions (Danish, Lithuanian, and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas

    European marine biodiversity monitoring networks: Strengths, weaknesses, opportunities and threats

    Get PDF
    © 2016 Patrício, Little, Mazik, Papadopoulou, Smith, Teixeira, Hoffmann, Uyarra, Solaun, Zenetos, Kaboglu, Kryvenko, Churilova, Moncheva, Bucas, Borja, Hoepffner and Elliott. By 2020, European Union Member States should achieve Good Environmental Status (GES) for 11 environmental quality descriptors for their marine waters to fulfill the Marine Strategy Framework Directive (MSFD). By the end of 2015, in coordination with the Regional Seas Conventions, each EU Member State was required to develop a marine strategy for their waters, together with other countries within the same marine region or sub-region. Coherent monitoring programs, submitted in 2014, form a key component of this strategy, which then aimed to lead to a Program of Measures (submitted in 2015). The European DEVOTES FP7 project has produced and interrogated a catalog of EU marine monitoring related to MSFD descriptors 1 (biological diversity), 2 [non-indigenous species (NIS)], 4 (food webs), and 6 (seafloor integrity). Here we detail the monitoring activity at the regional and sub-regional level for these descriptors, as well as for 11 biodiversity components, 22 habitats and the 37 anthropogenic pressures addressed. The metadata collated for existing European monitoring networks were subject to a SWOT (strengths, weaknesses, opportunities, and threats) analysis. This interrogation has indicated case studies to address the following questions: (a) what are the types of monitoring currently in place? (b) who does what and how? (c) is the monitoring fit-for-purpose for addressing the MSFD requirements? and (d) what are the impediments to better monitoring (e.g., costs, shared responsibilities between countries, overlaps, co-ordination, etc.)? We recommend the future means to overcome the identified impediments and develop more robust monitoring strategies. As such the results are especially relevant to implementing comprehensive and coordinated monitoring networks throughout Europe, for marine policy makers, government agencies and regulatory bodies. It is emphasized that while many of the recommendations given here require better, more extensive and perhaps more costly monitoring, this is required to avoid any legal challenges to the assessments or to bodies and industries accused of causing a deterioration in marine quality. More importantly the monitoring is required to demonstrate the efficacy of management measures employed. Furthermore, given the similarity in marine management approaches in other developed systems, we consider that the recommendations are also of relevance to other regimes worldwide

    Using ecological models to assess ecosystem status in support of the European Marine Strategy Framework Directive

    Get PDF
    © 2015 The Authors. Published by Elsevier Ltd. The European Union's Marine Strategy Framework Directive (MSFD) seeks to achieve, for all European seas, "Good Environmental Status" (GEnS), by 2020. Ecological models are currently one of the strongest approaches used to predicting and understanding the consequences of anthropogenic and climate-driven changes in the natural environment. We assess the most commonly used capabilities of the modelling community to provide information about indicators outlined in the MSFD, particularly on biodiversity, food webs, non-indigenous species and seafloor integrity descriptors. We built a catalogue of models and their derived indicators to assess which models were able to demonstrate: (1) the linkages between indicators and ecosystem structure and function and (2) the impact of pressures on ecosystem state through indicators. Our survey identified 44 ecological models being implemented in Europe, with a high prevalence of those that focus on links between hydrodynamics and biogeochemistry, followed by end-to-end, species distribution/habitat suitability, bio-opt ical (remote sensing) and multispecies models. Approximately 200 indicators could be derived from these models, the majority of which were biomass and physical/hydrological/chemical indicators. Biodiversity and food webs descriptors, with ∼49% and ∼43% respectively, were better addressed in the reviewed modelling approaches than the non-indigenous species (0.3%) and sea floor integrity (∼8%) descriptors. Out of 12 criteria and 21 MSFD indicators relevant to the abovementioned descriptors, currently only three indicators were not addressed by the 44 models reviewed. Modelling approaches showed also the potential to inform on the complex, integrative ecosystem dimensions while addressing ecosystem fundamental properties, such as interactions between structural components and ecosystems services provided, despite the fact that they are not part of the MSFD indicators set. The cataloguing of models and their derived indicators presented in this study, aim at helping the planning and integration of policies like the MSFD which require the assessment of all European Seas in relation to their ecosystem status and pressures associated and the establishment of environmental targets (through the use of indicators) to achieve GEnS by 2020

    A catalogue of marine biodiversity indicators

    Get PDF
    © 2016 Teixeira, Berg, Uusitalo, Fürhaupter, Heiskanen, Mazik, Lynam, Neville, Rodriguez, Papadopoulou, Moncheva, Churilova, Kryvenko, Krause-Jensen, Zaiko, Veríssimo, Pantazi, Carvalho, Patrício, Uyarra and Borja. A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD), this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g., EU policies, research projects) and in national and international contexts (e.g., Regional Seas Conventions, and assessments in non-European seas). The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity. The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs. Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat, or pressure in a marine area of interest. This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists, and any person interested in marine environmental assessment. It allows users to build, complement or adjust monitoring programs and has the potential to improve comparability and foster transfer of knowledge across marine regions

    Marine biodiversity and ecosystem function relationships: The potential for practical monitoring applications

    Full text link
    corecore